INDIAN STATISTICAL INSTITUTE, Bangalore Centre Midsem September 12, 2025

Course Name: Analysis of several variables

1.	Prove that $GL(n,\mathbb{C})$ is connected in the following suggested way. Suppose $A,B\in$	
	$GL(n,\mathbb{C})$. First show that there are only a finitely many complex numbers such that	
	$\det(\lambda A + (1-\lambda)B) = 0$. Then using this information show that there exists a path	
	$\rho(t) = \lambda(t)A + (1 - \lambda(t))B \subseteq GL(n, \mathbb{C})$ such that $\lambda(0) = 0$ and $\lambda(1) = 1$.	[7]

- 2. Let V be a vector space over \mathbb{R} and let $\|.\|:V\to\mathbb{R}$ satisfying all properties of being a norm except the triangle inequality. Then $\|.\|$ is a norm if and only if the unit ball $\{v\in V:\|v\|\leq 1\}$ is convex. [5]
- 3. TRUE or FALSE with justification.
 - [1] Let $f: \mathbb{R}^n \to \mathbb{R}$ such that $|f(x)| \leq |x|^2$. Then f is differentiable at the origin. [2]
 - [2] Let f be a bilinear function on \mathbb{R}^2 . Then f is differentiable on \mathbb{R}^2 .
 - [3] Let $A = \{(x, y) \in \mathbb{R}^2 : \text{ either } x < 0 \text{ or } x \ge 0, y \ne 0\}$. Let $D_2 f \equiv 0 \text{ on } A$. Then f is not necessarily independent of g on g.
 - [4] Let the point $r_0 = (x_0, y_0, z_0)$ lie on the surface G(x, y, z) = 0. Assume that $\nabla G(x_0, y_0, z_0) \neq 0$. Suppose that the parametrized curve r(t) = (x(t), y(t), z(t)) is contained in the surface and that $r(t_0) = r_0$. Then the tangent line to the curve at r_0 lies in the tangent plane to G = 0 at r_0 .
 - [5] Let F(u) be any differentiable function of one variable. Define $z(x,y) = F(x^2+y^2)$. Then the partial differential equation

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0.$$

[2] [3]

- [6] The function $f(x,y) = x^2 + y^2$ has a maxima on the curve xy = 1.
- 4. For nonzero real numbers a,b,c, define $F:\mathbb{R}^2\to\mathbb{R}$ by $F(x,y)=(a/2)y^2+by+cx.$ Then
 - [1] Is it true that there exist r_0 and a C^1 function $f:(-r_0,r_0)\to\mathbb{R}$ such that f(0)=0 and F(x,f(x))=0 for all $x\in(-r_0,r_0)$.
 - [2] Use the quadratic formula to answer the same question as above, explicitly finding r_0 and f. In particular, can you find the largest possible r_0 .

[6]